20 research outputs found

    Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs

    Get PDF
    A high level of water repellency in soils has an impact on soil hydrology, plant growth and soil erosion. Studies have been performed previously on model soils; consisting of close packed layers of glass spheres (140–400 μm in diameter), to mimic the behaviour of rain water on water repellent soils. In this study measurements were performed on multi-layered bead packs, to assess the interaction of water drops impacting layers consisting of different hydrophobic and hydrophilic layers. A high speed video camera was used to record the impact behaviour of water droplets on the bead packs focussing on the spreading of the droplet and the subsequent rebound behaviour of the droplet. Observations were made from the videos of the liquid marble effect on the droplet, whereby hydrophobic particles form a coating around the droplet, and how it differed depending on the arrangement of hydrophobic and hydrophilic layers within the bead pack. The droplet release height was varied in order to establish a relationship between impact velocity and the degree to which liquid marbling occurs, with higher impact speeds leading to a greater degree of liquid marbling. Measurements were also made to find the transition speeds between the three rebound conditions; rebound, pinning and fragmentation, showing an overall decrease in pinning velocity as the bead size increased

    TopCap: a tool to quantify soil surface topology and subsurface structure

    Get PDF
    The surface of a material such as soil, as characterised by its topology and roughness, typically has a profound effect on its functional behaviour. Whilst non-destructive imaging techniques such as X-ray Computed Tomography (CT) have been extensively employed in recent years to characterise the internal architecture of soil, less attention has been paid to the morphology of the soil surface, possibly as other techniques such as scanning electron microscopy (SEM) and atomic force microscopy (AFM) are viewed as more appropriate. However, X-ray CT exploration of the surface of a soil also permits analysis immediately below its surface and beyond into the sample, contingent on its thickness. This provides important information such as how a connected structure might permit solute infiltration or gaseous diffusion through the surface and beyond into the subsurface matrix. A previous limitation to this approach had been the inability to segment and quantify the actual 3-D structural complexity at the surface, rather than a predefined geometrically simplistic volume immediately below it. To overcome this we formulated TopCap, a novel algorithm that operates with ImageJ as a plugin, which automatically captures the actual 3D surface morphology, segments the pore structure within the acquired 3D volume, and provides a series of incisive morphological measurements of the associated porous architecture. TopCap provides rapid, automated analysis of the immediate surface of materials and beyond, and whilst developed in the context of soil, is applicable to any 3D image volume

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    Antitumor effect of TW-37, a BH3 mimetic in human oral cancer

    Get PDF
    TW-37 is a small molecule B cell lymphoma-2 (Bcl-2) homology 3 mimetic with potential anticancer activities. However, the in vivo anti-cancer effect of TW-37 in human oral cancer has not been properly studied yet. Here, we attempted to confirm antitumor activity of TW37 in human oral cancer. TW-37 significantly inhibited cell proliferation and increased the number of dead cells in MC-3 and HSC-3 human oral cancer cell lines. TW-37 enhanced apoptosis of both cell lines evidenced by annexin V/propidium iodide double staining, sub-G1 population analysis and the detection of cleaved poly (ADP-ribose) polymerase and caspase-3. In addition, TW-37 markedly downregulated the expression of Bcl-2 protein, while not affecting Bcl-xL or myeloid cell leukemia-1. In vivo, TW-37 inhibited tumor growth in a nude mice xenograft model without any significant liver and kidney toxicities. Collectively, these data reveal that TW-37 may be a promising small molecule to inhibit human oral cancer.This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science ICT & Future Planning [2019R1A2C1085896]

    Soil seal development under simulated rainfall: structural, physical and hydrological dynamics

    Get PDF
    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 minutes). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 - 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24 - 0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 minutes rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Transitions of water-drop impact behaviour on hydrophobic and hydrophilic particles

    Get PDF
    Extreme soil water repellency can have substantial implications for soil hydrology, plant growth and erosion, including enhanced splash erosion caused by raindrop impact. Previous studies of water droplet impact behaviour on man-made super-hydrophobic surfaces, with which water-repellent soil shares similar characteristics, revealed three distinct modes of splash behaviour (rebound, pinning and fragmentation) distinguished by two transition velocities: rebound-to-pinning (vmin) and pinning-to-fragmentation (v*). By using high-speed videography of single water droplet impacts we show that splash behaviour is influenced by the hydrophobicity of immobile particles, with hydrophobic glass spheres exhibiting all three modes of splash behaviour in the hydrophobic state but hydrophilic spheres exhibiting solely pinning behaviour. We found that increasing the particle size of fixed glass spheres increases vmin. A study of droplet impact on hydrophobic sand shows that the increased roughness of the immobile particles makes impacting droplets more likely to fragment at slower impact velocities. The mobility of the particles influenced droplet impact behaviour, with loose, hydrophobic particles displaying significantly greater vmin values than their fixed analogues. The surface tension of the water droplet also lifted loose, hydrophobic particles from the surface, forming highly mobile ‘liquid marbles'. Water-repellent soil was also shown to form ‘liquid marbles' at both the slow (approximately 0.3–2.1 m/s) and fast (about 7 m/s) droplet impact velocities studied. The observation of very mobile liquid marbles upon water droplet impact on water-repellent soil is significant as this provided a mechanism that may enhance erosion rates of water-repellent soil

    Post-Fire Impacts of Vegetation Burning on Soil Properties and Water Repellency in a Pine Forest, South Korea

    No full text
    Forest fires can have a direct and immediate impact on soil properties, particularly soil water repellency. This study investigated the direct impacts of the Gangneung forest fire of 2019 on soil properties and the spatial variability of soil water repellency with vegetation burn severity in the Korean red pine (Pinus densiflora Siebold and Zucc) forest of South Korea. A total of 36 soil samples were collected at depth intervals of 0–5 cm, 10–15 cm, and 20–25 cm from three burned sites, representing surface-fuel consumption (SC), foliage necrosis (FN), and crown-fuel consumption (CC), respectively. An unburned site was also used as a control. Soil properties such as soil texture, pH, bulk density, electrical conductivity (EC), total organic carbon (TOC), and cation exchange capacity (CEC) were analyzed in the laboratory. The increase in the sand fraction near the soil surface after a fire was associated with changes in silt and clay fractions. Moderate to high vegetation burn severity at the FN and CC sites caused a decrease in soil pH due to the thermal destruction of kaolinite mineral structure, but organic matter combustion on the soil surface increased soil pH at the SC site. Forest fires led to increases in total organic carbon at the FN and SC sites, owing to the external input of heat damaged foliage and burnt materials. Molarity of an ethanol droplet (MED) tests were also conducted to measure the presence and intensity of soil water repellency from different locations and soil depths. MED tests showed that vegetation burn severity was important for determining the strength of water repellency, because severely burned sites tended to have stronger water repellency of soil than slightly burned sites. Unburned soils had very hydrophilic characteristics across soil depths, but a considerably thick hydrophobic layer was found in severely burned sites. The soil water repellency tended to be stronger on steep (>30°) slopes than on gentle (<15°) slopes

    Synergy of tensile strength-ductility in IN718/CoCrFeMnNi/IN718 multi-material processed by powder high-pressure torsion and annealing

    No full text
    © 2022 Acta Materialia Inc.Materials manufactured through conventional powder metallurgy (PM) techniques generally exhibit inferior tensile properties due to structural defects. Nevertheless, a recently proposed cold-consolidation technique using powder high-pressure torsion represents well-manufactured structures with ultra-high tensile properties in the absence of cracks or pores. This novel PM-based technique is utilized in the present investigation to fabricate a multi-material Inconel 718/CoCrFeMnNi/Inconel 718 layered structure. By a combination of uttermost high densification, ultra-fine-grained microstructure, and hetero-deformation induced strengthening effect, the present cold-consolidated multi-material exhibits tensile properties with yield strength of 1255.4 MPa, uniform elongation of 13.7%, and total elongation of 25.0%, overcoming monolithic Inconel 718 and CoCrFeMnNi systems. These findings shed light on the capability of the cold-consolidation technique to manufacture multi-layered and gradient multi-functional structures with excellent mechanical response under tensile stress.11Nsciescopu

    Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements Over Asia

    No full text
    The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled to be in orbit in 2019 onboard the GEO-KOMPSAT 2B satellite and will continuously monitor air quality over Asia. The GEMS will make measurements in the UV spectrum (300-500 nm) with 0.6 nm resolution. In this study, an algorithm is developed to retrieve aerosol optical properties from UV-visible measurements for the future satellite instrument and is tested using 3 years of existing OMI L1B data. This algorithm provides aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol layer height (ALH) using an optimized estimation method. The retrieved AOD shows good correlation with Aerosol Robotic Network (AERONET) AOD with correlation coefficients of 0.83, 0.73 and 0.80 for heavy-absorbing fine (HAF) particles, dust and non-absorbing (NA) particles, respectively. However, regression tests indicate underestimation and overestimation of HAF and NA AOD, respectively. In comparison with AOD from the OMI/Aura Near-UV Aerosol Optical Depth and Single Scattering Albedo 1-orbit L2 Swath 13 km x 24 km V003 (OMAERUV) algorithm, the retrieved AOD has a correlation coefficient of 0.86 and linear regression equation, AOD(sub GEMS) = 1.18AOD(sub OMAERUV) + 0.09. An uncertainty test based on a reference method, which estimates retrieval error by applying the algorithm to simulated radiance data, revealed that assumptions in the spectral dependency of aerosol absorptivity in the UV cause significant errors in aerosol property retrieval, particularly the SSA retrieval. Consequently, retrieved SSAs did not show good correlation with AERONET values. The ALH results were qualitatively compared with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) products and were found to be well correlated for highly absorbing aerosols. The difference between the attenuated-backscatter-weighted height from CALIOP and retrieved ALH were mostly closed to zero when the retrieved AOD is higher than 0.8 and SSA is lower than 0.93. Although retrieval accuracy was not significantly improved, the simultaneous consistent retrieval of AOD, SSA and ALH alone demonstrates the value of this stand-alone algorithm, given their nature for error using other methods. The use of these properties as input parameters for the air mass factor calculation is expected to improve the retrieval of other trace gases over Asia
    corecore